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We propose a new method for the reconstruction of the signed distance function
in the context of level set methods. The new method is a modification of the algo-
rithm which makes use of the PDE equation for the distance function introduced by
M. Sussman, P. Smereka, and S. Osher (199€omput. Phys119, 146). It is
based mainly on the use of a truly upwind discretization near the interface. Com-
parison with the previous algorithm shows a definite improvement. When used
with a first-order upwind scheme, the method provides first-order accuracy for the
signed distance function in the whole computational domain, and second-order ac-
curacy in the location of the interface. A second-order version of the method is also
presented. © 2000 Academic Press

1. INTRODUCTION

Level set methods have proven to be useful tools for computing interface evolution
this approach the interfacg, is represented as the zero level set of a continuous level s
function, ¢, defined in a domaie c IRY; i.e.,

T ={xeRY:¢(x =0}

The functiong is defined everywhere in the domaih The interfaceX is updated by
solving a transport equation fer;

d

% tv.vg=o, ()
ot
wherev is an extension of the interface velocity

In many applications the level set function obtained by the solution of Eq. (1) may beco

distorted, which means that its gradient may become very large or very small around
interface. Itis therefore useful to replace the level set function with a better behaved funci
which has the same zero level set. This process is cadladialization [1].
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The simplest and most useful choice is to replace the level set function by the sigt
distance function. A signed distance function associated to a level set furations
defined by

D(x) = ryr;izn IX — yl sgne (x)). 2

Reinitialization with the signed distance function has been used in a number of differ
circumstances, for example, Chopp [1] (minimal surfaces), Sus&hah [2, 3] (free
boundary problems in two-phase flow), Chemnal. [4] (crystal growth), and Merriman
et al. [5] (motion of multiple junctions). Reinitialization with distance functions has alsc
been used in the development of fast level set methods by &ealg6]. A different fast
method (the fast marching method) has been used by Adalsteinsson and Sethian [7].
obtain the distance function as a by-product of the method.

There are several methods for reinitializing the level set function to the signed dista
function. One possibility would be to compute the distance function using a discretiz
version of Eqg. (2). This approach can be used for very accurate calculations if the lo
tion of the interface is accurately known. An example of its use is shown in Section
Such technique, however, is not very practical in level set because it requires the a
rate evaluation of the position of several interface points. Moreover, the straightforwe
algorithm based on the discretization of Eq. (2) would be too expensive, the numbel
operations required being proportionalNg x Ny, whereNy is the number of grid points,
and Ny denotes the number of points which discretize the interfacén efficient im-
plementation of this algorithm for computing the distance function in the framework
a narrow bandlevel set method has been presented by Adalsteinsson and Sethian
Strain has developed fast methods for computing distance functions using tree mett
(see [8, 9]).

A different approach, introduced in [2], is based on solving the following PDE:

0
20 = srig”) 1~ V), 3)

¢ (x,0) = ¢°(x).

The zero level set af° represents the location of the interface. When this equation is solvs
up to timeT, theng (X, T) is the signed distance function for all the points within distance
T from the interface. As pointed out in [2], this is a Hamilton—Jacobi equation, and ol
could use upwind methods to compute its unique viscosity solution.

It is possible to rewrite this equation in the form

2 1 srig®n - Vo = sgrie?), ()
wheren = V¢/|V¢| is the unit normal to the level sets. In this form the equation appea
as a scalar convection equation. The direction of propagation of the signal is schematic
illustrated in Fig. 1. The continuous arrows represent the normal to the level, sdtjle

the dashed arrows represent the direction of propagation of the signal. It is clear from
figure that no boundary condition must be assigned at the boarder of the computatic
domain (the whole square) since the signal is propagating outward. The sign function



COMPUTING DISTANCE FUNCTIONS 53

FIG.1. Propagation of the signal off the zero level set for Eq. (4). The arrows represent the unit normal to
level set. The dashed arrows represent the direction of propagation of the signal.

is defined as
1 if x>0
sgnx) =<0 if x=0
-1 if x <O.

Note that on the zero level set ¢P, the functiong is initialized to zero and it must
remain zero. This property is consistent with the above definition of the sign function.
numerical computation, smoothed versid(&) of the sign function will be used. They
should maintain the property th&t0) = 0.

A similar approach, introduced by Sethian [see 7 and the references therein], is base
the idea of crossing times. One solves the equation

a9
— 4+ 1|V¢| =0
ot + Vol
both forward and backward in time and calculates the time wheaanges sign at a

particular node. This time is then the signed distance function.

2. THE PROBLEM

In this paper we shall examine the approach suggested in Ref. [2]. Equation (3) cat
discretized by using upwind methods. The first-order 1D version used in [2] is given by

o't = o' — AtS(¢0) G (9. (5)
where
max(ja, |, |b-) =1  if¢? >0
G() = 6
@ {maxuau, bi)—1 if¢l<0 ©
with
a= D¢ =@ — di-1)/AX, @)

b= D¢ = (¢iy1 — ¢i)/AX, (8)
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FIG. 2. Construction of the distance functi@n(x, t) using the original method given by Eq. (5) with the
initial condition given by (9). Number of iteratior’s; = 0, 3, 6,9, 12. The domain i€2 = [-5, 5] and we take
At = 0.9A%, AX = 0.5.

and, for any real numbdhm, it is h, = max(h, 0), h_ = min(h, 0). The smoothed sign
function Sis given by

__ ¢
V#? + Ax2
This scheme has been successfully used in several contexts; nevertheless it suffers
drawbacks. In 1D, under certain conditions, the zero of the level set function will tend

approach to the closest grid node, after several iterations. To illustrate this, we considel
initial condition

S(¢) =

#°(x) = (X — 0.4AX) (X + 6)/2 + 1. (9)

The results of the implementation of the above algorithm are illustrated in Figs. 2 anc
This effect was pointed out to the authors by A. Sarti (Private communication).

The explanation of this effect and a simple procedure to overcome this drawback
illustrated in the next section.

3. THE SUBCELL FIX

We begin by remarking that Eq. (3) is a first-order hyperbolic equation, which can
written as

— +w— =sgng¢", (20)
where

w = sgn¢°) sgn( 34))-

ax
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FIG. 3. A close up of Fig. 2 showing how the zero level set has moved. Cubic spline interpolation has b
used to reconstruei(x, t) from its grid values for plotting purposes only. Dashed line: initial level set functior
$°(X).

In Eq. (10), the characteristics propagate outward from the interface, in the normal direct
with speed 1. The rate of change of the phase function along the characterigticiis
Qoup) and—1 (in jn). Therefore after atim&, the value of the phase is the signed distanc
function from the interface.

Methods used to solve this equation are usually upwind methods, where the disc
derivatives are computed by upwind differencing according to the direction of the char
teristics. In particular, this means that when differencing across the interface, this prop
will be violated. It is clear that the method presented in the introduction has differenc
across the interface.

Discretization of the derivatives near the interface is not truly upwind, in the sense tl
part of the information is coming from the wrong side of the level set. This is illustrate
in the following example (see Fig. 4). Suppose we wish to updatei = 4. Then the
application of the above algorithm would give

a=¢4_¢3, b=¢5_¢4.
AX AX

In this casea > 0,b > 0, andg > 0 and therefore we have from (5) that

n_ n
oA ¢3|At

n+1 n
p— +
by =y AX

Therefore, the value of the level set functigfi* depends on the valug which is on the
other side of the interface. This is inconsistent with upwinding since information shot
propagate outward from the interface.

As we shall see, modifying the numerical schemes to ensure that the schemes
truly upwind across the interface will dramatically reduce the movement of the interfa
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FIG.4. Example that shows why the original scheme (5)—(8) is not truly upwinding. The dashed line represe
the piecewise linear reconstruction of the original level set funetforiPoint A represents the intersection of the
latter with thex axis, and the thick line is the approximation of the distance function at point 4.

Moreover, we shall show that the motion of the interface is bounded in time by a const
that depends on the accuracy of the method. The new upwind scheme is obtained
simple correction of the previous scheme. It uses Egs. (5) and (6) with different expressi
of G(¢); and of the sign functioi®. Near the interface, the functids is given by

G(¢)i = |DyPei| — 1, (11)

where the upwind derivatives,;B) of a functiong (x) near the interface are given by the
geometrical consideration that the left derivative at point 4 (see Fig. 4) is given/,,
whereD, is the approximation of the distance function computed using the original lev
set functiong? (the length of the thick segment in Fig. 4). This geometrical constructio
leads to the scheme

& if ¢, <0

Dil
—b7 if ¢Pel, <O,

DUP#; = (12)

whereD; is an approximation of the signed distance function from the interface figtthe
node. The derivation of this formula relies on the fact thas zero at the interface and
the characteristics always point outward from the interface. A possible choidge (@ke
Fig. 4) is given by

2¢°

Di = AX+———+—.
l ¢ 1 — ¢ |

(13)
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The smoothed sign functio@is given by

2 if p%¢° , <0 or ¢%¢°, <0
S:{AX I¢I¢)Ifl— ¢|¢|+1_ (14)

sgn(¢?)  otherwise

Summarizing, we compute the derivatives as usual if we are not within one grid cell fre
the interface; otherwise, we compute the derivatives using the informatiog thaero on
the interface.

If we use (12) and (14) in (5), we obtain the scheme

o {%”—%(sgrwi‘))wl—&) if $Ppl1 <0 or ¢Ppl, <0 15

' ¢ — At sgn(¢?) G(¢); otherwise
whereG(¢); is given by Eg. (6). In writing (15) we made use of the fact that(8pn=
sgn(¢).

Remark. Whenever there is a topology change it is conceivable that the denominato
Eq. (13) becomes very small. In order to overcome this difficulty, a more robust express
for the signed distance function would be

0
Di = AX 4 , (16)
A,
where
A = max{|¢P — ¢ a|/2. |¢7 1 — 8] |60 — da| €} (17)

ande is a small positive number.

Remark. Note that the CFL stability condition for the above schematis< Ax. This
uniform stability condition is obtained by using the smoothed sign function (14). Th
function has the property of being zero on the original level set, as required. Furtherm
a uniform CFL stability condition on the time step requires a smaller valugrafar the
interface in order to compensate for the effect of an effectively smaller local grid size (1
space derivative is computed with a local grid size which is effectively equEDitD.
The fact that the smoothed sign function vanishes near the interface does not chang
equilibrium solution for large time.

Remark. A possible variant of this scheme is to assign the value of the signed distar
function D; to ¢(xj) and to use it as boundary condition for the upwind scheme. Sut
variant would provide essentially the same accuracy.

Here we use the new scheme on the same examples shown in the previous sectic
Figs. 5 and 6 we show the evolution of the distance function in 1D. It is evident that af
an initial transient, the distance function converges to the correct value up to second o
in Ax, and no approach toward the closest node is observed for the zero-level point.

4. 2D RESULTS

In two and three dimensions the problem is more severe, since repeated applicatior
the algorithm will cause the interface to loose area and shrink. We shall illustrate this w
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FIG. 5. Construction of the distance functiaf(x, t) using the new method given by Eq. (15) with the
initial condition given by (9). Number of iteratior’s; = 0, 3, 6,9, 12. The domain i€2 = [-5, 5] and we take
At = 0.9AX, AX = 0.5.

the following example. We consider
9700 = VX2 +y? — 4 (18)

The zero level set is a circle with radius 4 ap®(x) is the signed distance function. If
we apply the reinitialization algorithm to this function it should not move. A first-orde

-2.5¢ ! L L . I 1
-0.6 -0.4 -0.2 0 0.2 0.4

FIG. 6. A close up of Fig. 5 showing that the zero level set moves considerably less with the new meth
Cubic spline interpolation has been used to reconstruct the function from its grid values. Dashed line: initial le
set functionp®(x).
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implementation of (3) in 2D is given by [2]
¢t =gf — AtS(¢°))G (@)

where

60 vmax@Z, b?) + maxc?,d?) — 1
H vmax@?, b?) + maxc?, d?) — 1

with

{CE Dy éi = (¢i,j — ¢i,j-1)/AX
d=Dj¢i = (B j+1— i)/ AX,

59

(19)
if 0. >0
"= (20)
if qbi?j <0

(21)

anda andb are given by 2D versions of the expressions given by (5).The results are shc
in Fig. 7. We observe not only that the circle shrinks but also that there is considerable (
anisotropy. This effect is reduced if one uses higher order methods (M. Sussman, pri
communication). Thus we see that this algorithm produces an error that is proportione
the number of iterations. In most applications a small number of iterations of reinitializati
procedure are applied each time step. Thus the total number iterations will be large;
sequently, the error due to the reinitialization algorithm could in principle be rather lar
Sussman and Fatemi [10] proposed to modify Eg. (5) by imposing the constraint that
total area must be preserved. Other work [6] shows that there is an additional diffculty wi
the initial level set function is not close to a signed distance function. The authors prop
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FIG. 7. Construction of the distance function in 2D using the original method as given by Eq. (19) with
initial condition given by (18). The key feature is that the interface moves considerably. In this figure we h:
plotted the zero level set @f when the number of iterations N, = 0, 160, 320, 480, 640, 800. The domain is

Q = [-5, 5] x [-5, 5] and we takeAt = 0.5A%, Ax = 10/16.
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to solve the problem by suitable modification of the mollified sign function, namely

¢
¢?+ [DpPAX?

whereD¢ is a discretization oV ¢. In this paper we show that a simple modification of
scheme (15) virtually removes both of these difficulties. We shall see that our improvem
of the algorithm has an error bound thatridependent of the number of iterations

The scheme presented in the previous section can be straightforwardly extended in
dimensions. The resulting scheme is

S:

N+l _
i =

ol — ax (sn(ely) e[ = Dij) i (. ) € Tax
{ '~ ax (san(@?;)|o; | — Dij) 1€ &a (22)

o — Atsgn(¢?;)G(@)i | otherwise

where the sek x defines the points which are within one grid point from the level sef
More specifically, we say thdt, j) € Xay if

¢i0.j¢io—1,j <0 or ¢fj¢i°+1,j<0 or ¢i9j¢i?j—l<0 or ¢>ﬁj¢ﬁj+l<o.

The quantityD; j represents the distance of nodej) from the interface and can be
computed, for example, by

2Ax¢P j

el @3)

or by a more robust formula, an analogue to the one used for the one-dimensional sch
The quantityG is computed according to formula (20).

In Fig. 8 we show the evolution of the zero level set of a phase function, with the sal
initial condition of the example shown in Fig. 7, but satisfying the new evolution equatior

Next, we compare the old and new schemes for the computation of the signed diste
function from an ellipse.

We start with

X2 y2
¢(Xa yv 0) = f(X1 y) (/A\Z + A\2> - 1 ) (24)

where
f(X,y) =&+ (X —X0)* + (Y — Yo)?,

and the parameters are giveny=4,B = 2,¢ = 0.1, Xg = 3.5, andyy = 2. This choice

of ¢ (X, y, 0) means that our initial condition has both small and large gradients near
zero level set (Fig. 9). In order to check the validity of our new scheme, we compute f
L norm of the difference between the level set function and the distance function. Mg
precisely, we compute

lg" — Dlla =Y _ |¢]; — D(xi.p)|AX%, (25)
]
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FIG. 8. Construction of the distance function in 2D using the new method as given by Eq. (22), (23) wi
the initial condition given by (18). We see that with the new method the interface barely moves. In this figure
have plotted the zero level set¢ffor the following number of iterations\, = 0, 160, 320, 480, 640, 800. The
domain isQ = [-5, 5] x [-5, 5] and we takeAt = 0.5Ax, Ax = 10/16.

whereD(x; j) is a very accurate approximation of the exact signed distance function whi
is computed as

D) = 1<fpill1\‘: IXi.j — Xplsgn@°(xi j)),

wherex is a point that is exactly on the interface. Thereldsesuch points. For the ellipse
we usex, = (Xp, Yp), Where

Xp = Acog2rp/Nyx) and Yp = Bsin(2rp/Nx).

To estimate how much the interface moves we compute the following integral:

Es =/ $(x. )| ds (26)
x

The discrete form is

1os . .
Ex = 5 3 (1Xp. D] + [Xps2, DDIXps1 — X, (27)
p=1

wherex,, is given above an&(xp, t) is a third-order interpolation af atxp.

The results are summarized in Figs. 10 and 11, where the log plot of the error is shc
as a function of time for the new algorithm (solid line) and for the old algorithm (dashe
line). The computation has been performed using«58D, 100x 100, and 200« 200 grid
points for the new algorithm and 200200 for the old one. In the approximation Bix;; )
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FIG. 9. The results of applying the new method for the initial conditions given by (24). The domain |
Q =[-5, 5] x [-5, 5] and we are using a 200 200 gridAt = 0.5Ax. The number of iterations is 0, 10, 25, 50
starting from the top left and finishing in the lower right. The contours run frdirto 1 and are spaced by 0.2.

FIG. 10. ThelL!® error between the numerically computed distance function and the exact distance funct
(Eq. (25)) is plotted as a function of time for the new methodNo# 50, 100, 200 (solid lines) and for the old
method withN = 200 (dotted line). These errors are for the same initial condition as used in Fig. 9.

62
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t

FIG. 11. Thel® error between the zero level set@f ande (x, t) (defined by (27)) is plotted as a function
of time for the new method foX = 50, 100, 200 (solid lines) and for the old method with= 200 (dotted line).
These errors are for the same initial condition as used in Fig. 9.

we usedNy = 2000 points, and we checked that by ushtg = 4000 we obtain the same
value of the error (within 0.2%). Notice that the new method is first order accurate |
expected) and that the error approaches very quickly a stationary value, while the clas:
algorithm produces a result that degrades with time.

Figure 11 shows that the error in the position of the zero level decreases by a fa
of 4 when the mesh grid siz&x is halved. This means that the position of the interfac
is preserved to second-order accuracy. It is not surprising that a first-order upwind gi
second-order accuracy, since the error within a fixed number of grid points from the interf
is proportional to the local truncation error, which is second ord@ninFurthermore, this
property is essential for the construction of a consistent first-order scheme that makes
of the reconstruction of the distance function at every time step as an intermediate stac
the computation, provided time step and grid size are of the same order of magnitude.

5. HIGH-ORDER SCHEMES

It is possible to construct high-order versions of the present scheme. In this section
consider a second-order scheme, which is based on second-order formulas for the evalt
of the derivatives. The second-order scheme in 1D is still given by Egs. (5)—(6), but n
Egs. (7 and 8) are replaced with a second-order approximation of space derivatives.
from the interface, the one-sided derivatives are obtained by the same scheme used ir
appendix B]. Here we report the scheme for completeness. Given five points of the ste
around pointx;, (Xp(K), fp(k),k=—2,...,2), the left and right derivativea andb are
given as follows. First compute the table of divided differences,

fo(k+1) — fo(k)

Xp(k+1) — xp(k)’

®[k+1,k+ 2] — o[k, k+ 1]
Xp(K+2) — xp(K)

o[k, k+ 1] =

@[k, k+2] = . k=-2...,0
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Then computa andb as

c_. = MM (®[-2, 0], ®[-1, 1)), ¢, = MM (®[-1, 1], [0, 2]),
a= D, ¢ = P[—-1, 0] + c_(Xp(0) — xp(—1)),
b= D;¢i = [0, 1] + ¢4 (Xp(0) — Xp(1)),

where MM is the minmod function defined as

o if la| < |B] and a8 >0
MM (a, B) = < B if la| > |B] and o >0
0 if af < 0.

The points of the stencil are chosen as follows. If pajris not close to the zero level set,
then

Xp(K) = X4k, fo(K) = ¢ijxk, k=-2,...,2

If point x; is within one grid cell from the interface, then the stencil will include the
intersection of the function with the axis (see Fig. 12). In most cases, the point of intersect
can be efficiently computed by fitting a third-order polynomiat x(¢) through the grid
points near the zero (marked by a circle).

The extension of such a second-order scheme to two dimensions is straightforward. I
we show the numerical results obtained with the second-order scheme in two dimensic

We perform the same test case used for the first-order scheme, with the initial condit
given by Eq. (24). For the computation of the “exact” signed dist&hess used\y = 4000
points.

25
2r *
15F
1 -
0.5
<
or ¥
A X,
i
-0.5F
-1F
-15F
_2 1 Il 1 1 I 1 1
0 1 2 3 4 5 6

FIG. 12. Use of the stencil for the approximation of left and right derivatives at pointhe vector ¥ is
given byx, = (Xi_1, Xa, Xi, Xi+1, Xi+2). Point A is obtained constructing a third order polynomia x(¢) that
fits the circled points.
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L1 error in the distance function - second order scheme

FIG. 13. Second-order method: THe" error between the numerically computed distance function and thi
exact distance function (Eqg. (25)) is plotted as a function of timeéNfee 50, 100, 200. These errors are for the
same initial condition as used in Fig. 9.

In Fig. 13 we reproduce thie* norm of the error obtained with the second-order scheme
It is evident that the scheme provides a second-order-accurate evaluation of the dist
function in the whole domain.

In Fig. 14 we reproduce the error in the evaluation of the position of the level set. T
scheme maintains the position of the level set with third-order accuracy.

As a final remark observe that if one is interested in a second-order-accurate evalue
of the distance function, it is not necessary to reconstruct the space derivatives nea
interface with the accurate procedure outlined above. It is sufficient to use the first-or
approximation of the derivatives near the interface, according to Egs. (12) and (13) in
and Egs. (22) and (23) in 2D, and the second-order ENO scheme for the propagation o

Relative error in the location of the interface — second order scheme
T T

t

FIG. 14. ThelL? error between the zero level set@f and¢ (x, t) (defined by (27)) is plotted as a function
of time for the second-order method fidr= 50, 100, 200. These errors are for the same initial condition as usec
in Fig. 9.
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L1 error — second order scheme with first order fix

FIG. 15. Second-order method with linear subcell fix near the zero level set.Ltherror between the
numerically computed distance function and the exact distance function (Eg. (25)) is plotted as a function of t
for N = 50, 100, 200. These errors are for the same initial condition as used in Fig. 9.

distance function for all other points not adjacent to the interface. Figure 15 reproduces
L norm of the error obtained with this intermediate scheme. It is evident that the distat
is computed with second order accuracy.

6. FINAL REMARKS

Because of its simplicity, accuracy, and efficiency, we believe that the present sche
can be effectively used as a tool for the computation of a signed distance function, either
problems where this function is required or as an intermediate step in level set calculatic
Because of its accuracy and efficiency, the scheme can be used at each time step wi
affecting the overall accuracy or efficiency of level-set-based methods.

With regard to the efficiency of the scheme, we observe that if the scheme is usec
an intermediate step for the construction of the distance function near the zero level s¢
a narrow band level set method, then its complexity is dDliN), whereN is the total
number of grid points. This is true because the number of time steps for which the equa
must be solved is a fixed number, independent of the size of the problem, and therefore
number of operations is proportional to the number of the unknowns.

On the other hand, if one wants to use this method for the computation of the dista
function at all points of the computational domain, then the complexity of the scher
(for the simple geometry illustrated in Fig. 1) would k& N%?) for two-dimensional
computation and (N*#/?) for three-dimensional computation. In this case the complexit
of the algorithm would be higher than the complexity of the fast marching method.
is conceivable to imagine a more sophisticated variant of the method, in which only 1
values of the level set far from a front moving with speed one will be updated. In tt
way the scheme would be closer in spirit to the time marching method, and it wot
possibly be competitive with it. Such variant is, however, far beyond the scope of the pres
paper.
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